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Abstract

We give the set of maps fromZd to GL(2,R) the structure of a Poisson manifold endowed with a
pair of compatible Lie algebroids. A suitable reduction process, of the Marsden–Ratiu type, yields
a smaller manifoldN with the same geometrical properties as the original manifold. Moreover,
N is a bi-Hamiltonian manifold and the flows naturally defined on it are the periodic Toda flows.
© 2000 Published by Elsevier Science B.V.
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1. Introduction

The (finite) periodic Toda lattice is a system ofd particles on a circle, with nearest-neighbor
interaction given by an exponential repulsive potential [20]. This system has been studied
in depth, both from the physical and from the mathematical point of view. In this paper
we investigate the periodic Toda lattice by means of a new approach, which is suggested
by the “continuous” case of the KdV equation, i.e., the prototype of the so calledsoliton
equations[3]. Indeed, it is well-known that the KdV equation is a bi-Hamiltonian system
on an infinite dimensional phase space, and that this phase space is obtained by reduc-
tion of the space Map(S1, gl(2,R)) of C∞ maps fromS1 to gl(2,R). Moreover, the inte-
grability properties of the KdV equation can be easily derived from its bi-Hamiltonian
features. To pass from the continuous setting to the discrete one it is quite natural to
replace the circleS1 with the cyclic groupZd . Moreover, it is convenient to replace
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the Lie algebragl(2,R) with its Lie groupGL(2,R). This way we are led to consider
the finite-dimensional phase space Map(Zd ,GL(2,R)). Unfortunately, there is no way
to endow this space with a bi-Hamiltonian structure. Therefore in Section 2 we define
on Map(Zd ,GL(2,R)) a new geometrical structure such that, under some assumptions,
a suitable reduction process yields again a bi-Hamiltonian manifold. We call this new
kind of manifold aPoisson bi-anchored manifold: it is a Poisson manifold equipped with
a generalized “Dirac structure” [4] that defines a useful relation on one-forms. More
technically, this relation is written in terms of a pair of compatible Lie algebroids
[10].

In Section 3 we present the reduction of the specific Poisson bi-anchored manifold
Map(Zd ,GL(2,R)), which is an adaptation of the Marsden–Ratiu reduction scheme for
Poisson manifolds [14]. As we said, the reduced manifold is bi-Hamiltonian and we can
apply the theory of Gelfand and Zakharevich [7] to study the integrability properties of
the corresponding bi-Hamiltonian flows, as we do in Section 4. These are the flows of
the periodic Toda lattice, which appears once more as the discrete counterpart of the KdV
equation.

I wish to thank Marco Pedroni for many enlightening discussions and Franco Magri for
proposing the problem and introducing me to dynamical systems.

2. Poisson bi-anchored manifolds

In this section we introduce the geometric objects we need for our approach to the Toda
lattice. We will endow the manifoldM of the maps from the cyclic groupZd to GL(2,R)
with several structures, namely a Poisson tensor and two compatible Lie algebroids suitably
soldered together.

A point q ofM is simply ad-tuple of invertible 2× 2 matrices

q = (q1, . . . , qd), (1)

where

qk =
(
qk1 qk2

qk3 qk4

)
. (2)

We will always be dealing withd-tuples of matrices and the following condition is
supposed to hold throughout the discussion:

(·)k+d = (·)k. (3)

For convenience, we will say that a matrix as in (2) represents ad-tuple as in (1). Vector
fields onMwill be represented byd-tuples of 2×2 matriceṡqk whose entries are functions
of the pointq ∈M. The same way, one-forms onM are represented asd-tuples of 2× 2
matricesαk where each entry is a function of the point. The value of the one-formα on the
vector fieldq̇ is given by the scalar function
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〈α, q̇〉 =
d∑
k=1

Tr(αkq̇k) = αk1q̇
k
1 + αk2q̇

k
3 + αk3q̇

k
2 + αk4q̇

k
4. (4)

Next, we endowMwith a Poisson manifold structure, which is inherited from the natural
immersion ofGL(2,R) in the space of 2× 2 matrices Mat(2,R) as an open, dense subset.
Indeed we can provide Mat(2,R) with the structure oftwisted Lie algebraif we define the
commutator of two matricesqa andqb in Mat(2,R) as

[qa, qb] = qabqb − qbbqa, (5)

whereb is any fixed matrix (see, e.g., [16]). Since Mat(2,R) can be identified with its dual
space through the trace form (4), it inherits the canonical (with respect to the commutator
(5)) Lie–Poisson bracket on the dual of a Lie algebra defined by Kirillov (see, e.g., [9]).
A quick computation shows that the corresponding Poisson tensorP ′ : T ∗M → TM is
assigned by the formula

q̇k = P ′(α)k = qkαkb − bαkqk. (6)

In order to recover the Toda lattice we choose

b =
(

1 0

0 0

)
. (7)

Then, the Poisson tensor explicitly reads

q̇k1 = qk2α
k
3 − qk3α

k
2, q̇k2 = −αk1qk2 − αk2q

k
4,

q̇k3 = qk3α
k
1 + qk4α

k
3, q̇k4 = 0. (8)

To obtain the Hamiltonian vector fieldXH associated with a (Hamiltonian) functionH :
M→ R we simply have to plug its differentialα = dH into Eq. (6).

At this point we go back to the general theory. We define on a Poisson manifoldM an
additional structure that represents a generalization of the action of a Lie algebra onM and
was first studied by Mackenzie [10].

Definition 1. LetM be a manifold. Then(M, E, A, {·, ·}) is said to be a Lie algebroid if
(a)E is a vector bundle onM.
(b) {·, ·} is a bi-linear composition law on0(E), the space of sections ofE , that makes

(0(E), {·, ·}) into a Lie algebra

{s, t} + {t, s} = 0, {{r, s}, t} + {{s, t}, r} + {{t, r}, s} = 0. (9)

(c) The mapA : E → TM, called anchor, is a Lie algebra morphism

A({s, t}) = [A(s), A(t)], s, t ∈ 0(E), (10)

where [·, ·] is the usual commutator of vector fields.
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If on the same manifoldM and vector bundleE live two different Lie algebroid structures
(M, E, A, {·, ·}) and(M, E, A′, {·, ·}′) we can consider the pencil of composition laws on
sections

{s, t}λ = {s, t} + λ{s, t}′, (11)

and the pencil of maps

Aλ(s) = A(s)+ λA′(s), (12)

whereλ is a complex parameter.

Definition 2. We say that the above Lie algebroids are compatible if(M, E, Aλ, {·, ·}λ) is
a Lie algebroid for every value ofλ. We call(M, E, Aλ, {·, ·}λ) a pencil of Lie algebroids
andAλ a pencil of anchors.

It is easy to check that the compatibility condition amounts to

[A(s), A′(t)] + [A′(s), A(t)] = A({s, t}′)+ A′({s, t}). (13)

In our approach the two compatible Lie algebroids are important because they allow us to
define a useful relation among one-forms.

Definition 3. LetA∗, A′∗ : T ∗M→ E∗ be the dual anchors ofA andA′, respectively. We
define a one-formα to be related with a one-formβ (and we denote this byα ∼ β) if

A∗α = A′∗β.

In the example we are considering here, whereM = Map(Zd ,GL(2,R)), we can define
two compatible Lie algebroids onM as follows. First, we consider the trivial vector bundle
E =M× [Mat(2,R)]d , where(·)d denotes thed-times Cartesian product(·)× · · · × (·).
The sections of this bundle are represented byd-tuples of 2× 2 matricessk whose entries
are functions of the pointq ∈M. Then we define the pencil of anchorsAλ : E → TM as

q̇k = Aλ(s)
k = sk+1(qk + λb)− (qk + λb)sk, (14)

whereb is the constant matrix defined in (7). In components the pencil of anchors reads

q̇k1 = ((sk+1
1 − sk1)q

k
1 + sk+1

2 qk3 − qk2s
k
3)+ λ(sk+1

1 − sk1),

q̇k2 = (sk+1
1 qk2 + sk+1

2 qk4 − sk2q
k
1 − qk2s

k
4)− λ(sk2),

q̇k3 = (sk+1
3 qk1 + sk+1

4 qk3 − qk3s
k
1 − qk4s

k
3)+ λ(sk+1

3 ),

q̇k4 = (sk+1
3 qk2 + sk+1

4 qk4 − qk3s
k
2 − qk4s

k
4). (15)

Let us construct a composition law{·, ·}λ on0(E) in such a way that(M, E, Aλ, {·, ·}λ) be
a pencil of Lie algebroids. Formula (13) and a simple calculation suggest that

{s, t}kλ = ∂A(s)t
k − ∂A(t)s

k + [tk, sk] + λ(∂A′(s)t
k − ∂A′(t)s

k), (16)
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where by∂q̇ t we mean the derivative of the sectiont along the vector fielḋq. It can be
checked that{·, ·}λ is a Lie bracket on0(E) for all λ. Thus, the manifoldM is a pencil
of Lie algebroids. To obtain explicitly the relation on the one-forms we need to derive the
expression of the dual pencil of anchorsA∗

λ = A∗ + λA′∗. An elementξ of the dual vector
bundleE∗ can be naturally identified with a point ofE by means of the pairing

〈ξ, s〉 =
d∑
k=1

Tr(ξksk) = ξk1 s
k
1 + ξk2 s

k
3 + ξk3 s

k
2 + ξk4 s

k
4.

Therefore the dual pencilA∗
λ : T ∗M→ E∗ can be viewed as a map that with a one-form

α associates ad-tuple ξk of matrices whose entries are functions of the pointq ∈ M. A
quick calculation shows thatA∗

λ reads

ξk = A∗
λ(α)

k = (qk−1 + λb) αk−1 − αk(qk + λb). (17)

With this formula and Definition 3 it is easy to check thatα ∼ β if and only if

qk−1
1 αk−1

1 + qk−1
2 αk−1

3 − αk1q
k
1 − αk2q

k
3 = βk−1

1 − βk1,

qk−1
1 αk−1

2 + qk−1
2 αk−1

4 − αk1q
k
2 − αk2q

k
4 = βk−1

2 ,

qk−1
3 αk−1

1 + qk−1
4 αk−1

3 − αk3q
k
1 − αk4q

k
3 = −βk3,

qk−1
3 αk−1

2 + qk−1
4 αk−1

4 − αk3q
k
2 − αk4q

k
4 = 0.

Now we return to the general theory to introduce the final character. We recall that so far
M is a Poisson manifold endowed with a pencil of Lie algebroids. We want to solder these
structures by means of two mapsJ, J ′ : T ∗M→ E that satisfy the following intertwining
conditions: ifα ∼ β then

P ′(α) = A′(Jα + J ′β), (18)

P ′(β) = A(Jα + J ′β). (19)

In this case we will say thatM is a Poisson bi-anchored manifold. We resume the whole
situation in the following picture:

A class of Poisson bi-anchored manifolds are for example the Poisson–Nijenhuis (PN)
manifolds (see [13]). These are manifoldsM endowed with a zero-torsion tensorN :
TM 7→ TM and a Poisson structureP , together with suitable compatibility conditions.
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In that case the vector bundleE on which the anchors are defined is the tangent bundle,
TM; the two anchors are the Nijenhuis tensorN and the identity map respectively; the
composition laws on the vector fields are easily obtained in terms of the Nijenhuis tensor; the
intertwining conditions are also satisfied, as a consequence of the compatibility conditions
between the Nijenhuis and the Poisson structure of a PN-manifold.

In the case of PN-manifolds the relation (3) among two one-forms is summarized by the
dual tensorN∗ : α ∼ β if β = N∗α. This relation displays a very nice property: if the
image throughN∗ of an exact one-form df ∈ X∗(M) is exact, i.e., there exists a function
f1 such that

N∗df = df1, (20)

then the recursive application of the operatorN∗ to df generates a bi-Hamiltonian hierarchy.
This is why the PN-manifolds represent a natural setting to study integrable Hamiltonian
systems.

Going back to our example, if we define the mapsJ, J ′ : α → s by

J : sk = αkqk, J ′ : sk = −αkb,

it is easy to see that they verify the intertwining conditions (18) and (19). In components
the maps read

J :




sk1 = αk1q
k
1 + αk2q

k
3,

sk2 = αk1q
k
2 + αk2q

k
4,

sk3 = αk3q
k
1 + αk4q

k
3,

sk4 = αk3q
k
2 + αk4q

k
4,

J ′ :




sk1 = −βk1,
sk2 = 0,

sk3 = −βk3,
ssk4 = 0.

This ends the definition of the geometrical structures of the manifoldM = Map(Zd ,GL
(2,R)): it is a Poisson manifold endowed with two compatible Lie algebroid structures that
define a relation on one-forms and two intertwining maps that solder everything.

3. The reduction

In this section we will leave the general theory. We will operate a reduction of the
manifoldM = Map(Zd ,GL(2,R)) studied in the previous section. With a combination of
a restriction and a projection we will obtain a new manifoldN of lower dimension with
the same geometrical structure as the original manifoldM. The interesting point is that on
N the Poisson tensor combines with the relation on one-forms in such a way to define a
second Poisson tensor. A check of the compatibility between the two Poisson tensors will
makeN into a bi-Hamiltonian manifold, which is the object of interest in our approach
(see, e.g., [11]). The reduction process we present here follows the reduction scheme (for
Poisson manifolds) of Marsden and Ratiu [14].
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As a first step, we consider the distribution ImP ′ + ImA′. It is easy to verify by formulas
(6) and (14) that this distribution is integrable and therefore it foliates Map(Zd ,GL(2,R))
in maximal integral leaves, which are the 3d-dimensional hyperplanes of the form

qk =
(
qk1 qk2

qk3 νk

)
, (21)

whereνk is a constant. The restriction process we mentioned above consists in selecting
one of these leaves. To obtain the Toda lattice, we pick the leafL defined byνk = 0 for all
k.

The pencil of anchors allows us to define another distribution, namelyD = A(kerA′),
which is integrable.1 We are interested only in the restriction of this distribution to the leaf
L, which we denote byD|L. The distributionE = D|L ∩ TL of L is also integrable and
an explicit computation shows thatE is spanned by the vector fields of the form

q̇k1 = 0, q̇k2 = −µkqk2, q̇k3 = µk+1qk3, (22)

for arbitraryµk. From this expression we see that along the vector fields inE the following
equations are satisfied:

q̇k1 = 0, (qk+1
2 qk3)

• = 0. (23)

This means that the distributionE admits the two invariants

ak1 = qk1, ak2 = qk+1
2 qk3. (24)

At this point we can operate the projection we mentioned above: we define the reduced
manifoldN to be the quotient of the leafL with respect to the foliation induced by the
distributionE. By (23) and (24) we see thatN is a 2d-dimensional manifold that can be
regarded asR2d , endowed with the set of coordinates(ak1, a

k
2)k=1,... ,d . The above formulas

also yield the expression of the canonical projectionπ : L→ N .
After obtaining the reduced manifoldN we endow it with a Poisson structure. This can

be done observing that(M, P ′,D,L) is Poisson reducible, in the terminology of [14]. To
find the expression of the reduction ofP ′ we have to extend a generic one-formϕ onN to
a one-formα onM (possibly defined only at the points of the leafL) which annihilates the
distributionD. This means

〈α,D〉 = 0, 〈α, q̇〉 = 〈ϕ, π∗q̇〉.
Let us denote byα = ext(ϕ) any such extension. Then the expression

p′(ϕ) = π∗ ◦ P ′(ext(ϕ)) (25)

does not depend on the choice of ext(ϕ) and determines a Poisson structure onN . If we
denote byϕ = ∑d

k=1ϕ
k
1dak1 +ϕk2dak2 the generic one-form onN , an easy calculation shows

1 This is true in general, provided that for any two sectionss, t in 0(E) such thatA′(s) = 0 andA′(t) = 0 we
have{s, t}′ = 0. It is evident from (16) that this condition holds in our case.
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that an extensionα = ext(ϕ) has the form

αk =

 ϕk1 qk+1

2 ϕk2

qk−1
3 ϕk−1

2 αk4


 . (26)

As we said, this matrix is not completely determined: the componentsαk4 are free, since
the extension gives an equivalence class of one-forms. Now we can apply formula (25) to
obtain the expression of the reduced Poisson tensorp′

ȧk1 = ak−1
2 ϕk−1

2 − ak2ϕ
k
2, ȧk2 = ak2(ϕ

k
1 − ϕk+1

1 ).

This is the well-known first Poisson structure of the periodic Toda lattice [1].
To find another Poisson structure we have to determine the reduced relation on the

one-forms ofN . Therefore we need the expression of the reduced dual pencil of anchors
a∗λ. To have this, in turn, we have to define a proper reduced vector bundleU based onN on
which the reduced anchors act:aλ : U → TN . It is convenient to define first the dual vector
bundleU∗ and the dual pencila∗λ. The definition of the vector bundleU and the pencilaλ
will then follow by duality.

Let us evaluate the original dual pencil of anchorsA∗
λ on the general extensionα of

the one formϕ ∈ X∗(N ). An explicit calculation shows thatξ = A∗
λ(ext(ϕ)) is given in

components by

ξk1 = ϕk−1
1 (qk−1

1 + λ)− ϕk1(q
k
1 + λ)+ ϕk−2

2 qk−1
2 qk−2

3 − ϕk2q
k+1
2 qk3,

ξ k2 = −ϕk1qk2 + ϕk−1
2 qk2(q

k−1
1 + λ)+ αk−1

4 qk−1
2 ,

ξ k3 = ϕk−1
1 qk−1

3 − ϕk−1
2 qk−1

3 (qk1 + λ)− αk4q
k
3, ξ k4 = 0. (27)

We notice that the following combinations:

ξk1 = ϕk−1
1 (qk−1

1 + λ)− ϕk1(q
k
1 + λ)+ ϕk−2

2 qk−1
2 qk−2

3 − ϕk2q
k+1
2 qk3,

ξ k+1
2 qk3 + ξk3q

k
2 = ϕk−1

1 qk2q
k−1
3 − ϕk+1

1 qk+1
2 qk3 + qk+1

2 qk3ϕ
k
2(q

k
1 + λ)

−qk2qk−1
3 ϕk−1

2 (qk1 + λ),

do not depend on the choice of the extension, i.e., they do not depend onαk4, and are invariant
along the fibers of the projection, i.e., they depend on the coordinates ofL only via the
combinationsqk1 = ak1 andqk+1

2 qk3 = ak2. Therefore we define the reduced dual vector
bundle asU∗ = N × R2d , with coordinates(ak1, a

k
2, η

k
1, η

k
2), and we assign the projection

τ : E∗|L → U∗ as follows: on the basis it is the canonical projectionπ : L→ N defined
by (23) and (24); on the fibers it reads

ηk1 = ξk1 , (28)

ηk2 = ξk+1
2 qk3 + ξk3q

k
2. (29)

Hence the reduced dual pencil of anchors, which is defined in analogy with (25) as

η = a∗λ(ϕ) = (τ ◦ A∗
λ)(ext(ϕ)), (30)
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reads explicitly

ηk1 = ϕk−1
1 (ak−1

1 + λ)− ϕk1(a
k
1 + λ)+ ϕk−2

2 ak−2
2 − ϕk2a

k
2,

ηk2 = ϕk−1
1 ak−1

2 − ϕk+1
1 ak2 + ak2ϕ

k
2(a

k
1 + λ)− ak−1

2 ϕk−1
2 (ak1 + λ). (31)

Expression (31) also yields the relation on the one-forms ofN . By Definition 3 we have
that two one-formsϕ,ψ onN are related if

a∗ϕ = a′∗ψ, (32)

which in components reads

ϕk1a
k
1 − ϕk+1

1 ak+1
1 + ϕk−1

2 ak−1
2 − ϕk+1

2 ak+1
2 = ψk1 − ψk+1

1 ,

ak1(a
k
2ϕ

k
2 − ak−1

2 ϕk−1
2 )+ ϕk−1

1 ak−1
2 − ϕk+1

1 ak2 = ak2ψ
k
2 − ak−1

2 ψk−1
2 .

To complete the Poisson bi-anchored structure of the reduced manifoldN we have to
calculate the reduced pencil of anchorsaλ : U → TN , which is readily obtained by
duality, and the reduced intertwining mapsj, j′. This computation is a bit more complicated
and can be found in [15]. If we choose the set of coordinates(ak1, a

k
2, u

k
1, u

k
2) for the vector

bundleU , then the intertwining maps turn out to be

j :

{
uk1 = −ϕk−1

2 ak−1
2 ,

uk2 = ϕk1,
j′ :

{
uk1 = 0,

uk2 = 0.

Now we focus on the special feature of thereducedPoisson bi-anchored manifoldN . By
Eq. (32), for a fixed one-formϕ there is a whole class of one-forms [ψ ] = ψ + kera′∗ that
is related with it. In the reduced structure, though, kera′∗ ⊂ kerp′. Therefore the following
tensor

p(ϕ) := p′(ψ) (33)

is well defined. A lengthy calculation shows that the bracket induced by this tensor verifies
the Jacobi identity. Furthermore,p is compatible withp′, i.e., the pencilpλ = p+ λp′ is a
Poisson tensor2 for all values of the complex parameterλ. Explicitly ȧ = pλ(ϕ) reads

ȧk1 = (ϕk−1
2 ak−1

2 − ϕk2a
k
2)(a

k
1 + λ)+ ϕk+1

1 ak2 − ϕk−1
1 ak−1

2 ,

ȧk2 = ak2(ϕ
k
1(a

k
1 + λ)− ϕk+1

1 (ak+1
1 + λ)+ ϕk−1

2 ak−1
2 − ϕk+1

2 ak+1
2 ). (34)

Hence we recovered the bi-Hamiltonian structure of the periodic Toda lattice (see [17] and
references therein). Our goal has been achieved: we arrived at a bi-Hamiltonian manifold by
means of a systematic procedure of reduction of the original Poisson bi-anchored manifold.
Now we have to investigate the information provided by the bi-Hamiltonian structure.

2 We recall that a manifold endowed with two compatible Poisson tensors is said to be bi-Hamiltonian.
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4. The periodic Toda lattice

In this section we show how the bi-Hamiltonian structure obtained in the previous section
accounts for the integrability of the periodic Toda system. In general, to obtain an integrable
system from a bi-Hamiltonian manifold(M, P , P ′) it is convenient to focus on the Casimirs
of the Poisson pencil, i.e., the functionsC such that their differentials are in the kernel of
Pλ. Indeed, if we expand a Casimir in powers ofλ

C =
∑
i

Hiλ
i, (35)

it is immediate to check that the coefficientsHi satisfy the Lenard relations

P ′(dHi) = −P(dHi+1). (36)

It is easily shown (see, e.g., [11]) that this in turn implies that theHi ’s are in involution with
respect to either Poisson bracket. If these coefficients are enough, the system is integrable
in the classical sense of Arnold [2]. Nevertheless, finding the Casimirs of a Poisson pencil
is not easy in general. In the present case we can make use of the following proposition

Proposition 4. If hk solves

hkhk+1 = (ak+1
1 + λ)hk + ak2, (37)

then

C(λ) = h1 · · ·hd
is a Casimir of the Poisson pencil(34). The solutionshk and thus the Casimirs C can be
calculated explicitly as Laurent series in the parameterλ.

Proof. We divide the proof in three parts.
1. By (34) a one-formϕ in the kernel ofpλ must satisfy

ϕk1(a
k
1 + λ)− ϕk+1

1 (ak+1
1 + λ)+ ϕk−1

2 ak−1
2 − ϕk+1

2 ak+1
2 = 0, (38)

(ϕk−1
2 ak−1

2 − ϕk2a
k
2)(a

k
1 + λ)+ ϕk+1

1 ak2 − ϕk−1
1 ak−1

2 = 0. (39)

Eq. (38) implies

ϕk1(a
k
1 + λ)+ ϕk−1

2 ak−1
2 + ϕk2a

k
2 = L, (40)

whereL is an arbitrary function that does not depend on the sitek. On the other hand,
Eq. (39) implies

0 = (ϕk−1
2 ak−1

2 − ϕk2a
k
2)ϕ

k
1(a

k
1 + λ)+ ϕk1ϕ

k+1
1 ak2 − ϕk1ϕ

k−1
1 ak−1

2

= (ϕk−1
2 ak−1

2 − ϕk2a
k
2)(L− ϕk−1

2 ak−1
2 − ϕk2a

k
2)+ ϕk1ϕ

k+1
1 ak2 − ϕk1ϕ

k−1
1 ak−1

2

=L(ϕk−1
2 ak−1

2 −ϕk2ak2)−(ϕk−1
2 ak−1

2 )2 + (ϕk2a
k
2)

2 − ϕk1ϕ
k−1
1 ak−1

2 + ϕk1ϕ
k+1
1 ak2,
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and thus it is equivalent to

(ϕk2a
k
2)

2 + ϕk1ϕ
k+1
1 ak2 − Lϕk2a

k
2 = G, (41)

whereG is another arbitrary function that does not depend on the sitek. In order to select
only exactone-forms we setL to be a constant andG = 0. Under these assumptions,
the system (38) and (39) is equivalent to

ϕk1(a
k
1 + λ)+ ϕk−1

2 ak−1
2 + ϕk2a

k
2 = L, (42)

ak2(ϕ
k
2)

2 + ϕk1ϕ
k+1
1 − Lϕk2 = 0. (43)

If we set

hk = ϕk+1
1

ϕk2

, (44)

we can rewrite the system (38) and (39) as

hk−1(a
k
1 + λ)+ ak−1

2 = L− ϕk2a
k
2

ϕk−1
2

, hkhk−1 = L− ak2ϕ
k
2

ϕk−1
2

.

Thus ifhk solves (37) then the one-formϕ = ∑
ϕk1dak1 + ϕk2dak2 defined by

L− ak2ϕ
k
2 = ϕk1hk, ϕk+1

1 = ϕk2hk, (45)

whereL is a constant, is in the kernel of the Poisson pencil.
2. The above one-formϕ is exact and its primitive isL ln(h1 · · ·hd). Indeed, by (37) and

(45) we can write

L

hk
= ϕk1 + (hk+1 − (ak+1

1 + λ))ϕk2.

Using this expression, we obtain, for any curvea(t) in N ,

〈ϕ, ȧ〉 =
d∑
k=1

(ϕk+1
1 ȧk+1

1 + ϕk2ȧ
k
2) =

d∑
k=1

(ϕk2hkȧ
k+1
1 + ϕk2ȧ

k
2)

=
d∑
k=1

ϕk2(ḣkhk+1 + hkḣk+1 − (ak+1
1 + λ)ḣk)

=
d∑
k=1

ϕk2ḣkhk+1 +
d∑
k=1

ϕk2hkḣk+1 −
d∑
k=1

(
ϕk1 − L

hk
+ ϕk2hk+1

)
ḣk

=
d∑
k=1

ϕk2ḣkhk+1 −
d∑
k=1

ϕk2ḣkhk+1 +
d∑
k=1

ϕk2hkḣk+1 −
d∑
k=1

(
ϕk1 − L

hk

)
ḣk

=
d∑
k=1

ϕk+1
1 ḣk+1 −

d∑
k=1

(
ϕk1 − L

hk

)
ḣk =

d∑
k=1

L

hk
ḣk = d

dt
(L ln(h1 · · ·hd)).

ThereforeL ln(h1 · · ·hd) is a Casimir and so is the productC = h1 · · ·hd .
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3. To express the solutionshk of the characteristic equation as Laurent series, it suffices to
write hk in either of the following forms:

hk = λ+
+∞∑
j=1

hk,j

λj
, hk =

+∞∑
j=−1

hk,j

λj
,

and substitute in (37). The coefficientshk,j are then determined algebraically.
�

We call (37) thecharacteristic equation. It is the counterpart of the well-known Riccati
equationh2 + hx = u + λ that appears in the study of the KdV equation (see, e.g., [5]).
Proposition 4 allows us in principle to calculate the Casimirs of the Poisson pencilpλ, but
the computation is lengthy. Fortunately there is a shortcut: if in (37) we set

hk = ψk+1

ψk
µ, (46)

the characteristic equation becomes the linear system

µ2ψk+2 − (ak+1
1 + λ)ψk+1µ− ak2ψk = 0. (47)

We can express (47) in matrix form as

Lψ = 0, (48)

whereL is the Lax matrix

L =




µ(a1
1 + λ) −µ2 0 ad2

a1
2 µ(a2

1 + λ) −µ2 . . .

0 a2
2

. . .
. . . 0

. . .
. . . µ(ad−1

1 + λ) −µ2

−µ2 0 ad−1
2 µ(ad1 + λ)



,

andψ is the vector of the “homogeneous coordinates”

ψ =



ψ1
...

ψd


 .

For (47) to admit non trivial solutions we must have detL = 0. It can be proved that the
cyclicity of the matrixL implies that its determinant is a polynomial of degree 2 inµd .
Therefore we must have

0 = detL = −µ2d + C1µ
d + C2, (49)

whereC1 is a monic polynomial of degreed in λ

C1(λ) = H1 + λH2 + · · · + λd−2Hd−1 + λd−1K1 + λd, (50)
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for proper coefficientsHi,K1. The functionC2 instead does not depend onλ

C2 = K2 = (−1)d+1a1
2a

2
2 · · · ad2 . (51)

By Proposition 4 and Eq. (46), for allµ that satisfy (49) we have thatµd = h1 · · ·hd
is a Casimir, thusC1 andC2 are Casimirs as well. Their(d + 1) coefficients provide all
information about the geometry of the system at hand. Indeed, sinceK1 andK2 are Casimirs
of the Poisson tensorp′, the 2(d − 1)-dimensional manifold described by the equations

K1 = constant, K2 = constant

is a symplectic leaf ofp′. 3 Furthermore, due to the Lenard relations, the(d−1) coefficients
Hi are a set of functions in involution with respect to the Poisson bracket induced byp′.
Since these functions are independent, the symplectic leaf admits a complete set of functions
in involution and thus the vector fields

Xi = p′dHi
describe an integrable system. This is thed-particle periodic Toda hierarchy.

4.1. An example: the3-particle Toda lattice

To illustrate how the scheme described above works and how the Toda lattice arises we
consider here the specific case whered = 3. This example is easy to handle, but at the
same time it displays all the features of the general case. In order to make the equations
easier to read we will change notation: we setak1 = bk, a

k
2 = ak, ϕ

k
1 = βk, ϕ

k
2 = αk. Thus

our bi-Hamiltonian manifoldN becomesR6 with coordinates(a1, a2, a3, b1, b2, b3). The
Poisson pencilpλ associates with a one-form

∑3
k=1(αkdak + βkdbk) the vector field

ȧk = ak(−αk+1ak+1 + αk−1ak−1 − βk+1(bk+1 + λ)+ βk(bk + λ)),

ḃk = (bk + λ)(−αkak + αk−1ak−1)+ akβk+1 − ak−1βk−1, (52)

wherek = 1,2,3. Eqs. (50) and (51) provide the Casimirs of the Poisson pencil (52)

C1(λ) = H1 + λH2 + λ2K1 + λ3, C2(λ) = K2, (53)

where

H1 = b1b2b3 + a2b1 + a1b3 + a3b2, H2 = b1b2 + b1b3 + b2b3 + a2 + a1 + a3,

K1 = b1 + b2 + b3, K2 = a1a2a3. (54)

Therefore the two vector fieldsX1 = p′dH1 andX2 = p′dH2 read

X1 : ȧk = ak(bk+1bk−1 − bk−1bk + ak+1 − ak−1),

ḃk = bk+1ak−1 − bk−1ak, (55)

X2 : ȧk = ak(bk+1 − bk), ḃk = ak−1 − ak. (56)

3 One can show (see [18]) that such a symplectic leaf can be endowed with a bi-Hamiltonian structure, obtained
by a Marsden–Ratiu reduction from the one onN .
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They define an integrable system on the symplectic leaves ofp′, which are four-dimensional
phase spaces. Expressions (55) and (56) are the equations of the 3-particle periodic Toda
system.

5. Conclusions

In this paper we defined a new type of manifolds, which we called the bi-anchored Poisson
manifold. We showed that a suitable reduction of a specific instance of these manifolds,
namely the set of maps fromZd to GL(2,R), gives rise to the phase space of thed-particle
periodic Toda lattice. This way we saw from a new point of view how the periodic Toda
lattice can be considered the discrete counterpart of the KdV hierarchy.

There are several further developments of this approach. First of all, it is easy to endow
the set of maps fromZd to GL(n,R) for a genericn ∈ N with the structure of “bi-anchored
Poisson manifold”. It is possible to show that the reduction of these manifolds gives rise to the
other periodic Toda systems, which are the discrete analog of Gelfand–Dickey hierarchies
[6]. This has been verified for the casen = 3 in [15].

Secondly (see [12,15]) the study of the conservation laws of the periodic Toda lattice al-
lows to define the discrete analog [8] of the KP equations on Sato Grassmannian [19]. These
represent flows on an infinite-dimensional phase space that admit invariant submanifolds.
These submanifolds are the different phase spaces of the full periodic Toda lattice, and the
restriction of the KP equation to these phase spaces are the Toda equations. This way it is
possible to extend to the discrete case the description given for the continuous case in [5],
where the KdV hierarchy and the (usual) KP equations are considered.
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