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Abstract

We give the set of maps frofy, to GL(2, R) the structure of a Poisson manifold endowed with a
pair of compatible Lie algebroids. A suitable reduction process, of the Marsden—Ratiu type, yields
a smaller manifoldV" with the same geometrical properties as the original manifold. Moreover,
N is a bi-Hamiltonian manifold and the flows naturally defined on it are the periodic Toda flows.
© 2000 Published by Elsevier Science B.V.
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1. Introduction

The (finite) periodic Toda lattice is a systemigdarticles on a circle, with nearest-neighbor
interaction given by an exponential repulsive potential [20]. This system has been studied
in depth, both from the physical and from the mathematical point of view. In this paper
we investigate the periodic Toda lattice by means of a hew approach, which is suggested
by the “continuous” case of the KdV equation, i.e., the prototype of the so cadliidn
equationg3]. Indeed, it is well-known that the KdV equation is a bi-Hamiltonian system
on an infinite dimensional phase space, and that this phase space is obtained by reduc-
tion of the space Ma?, gl(2, R)) of C>* maps froms? to gl(2, R). Moreover, the inte-
grability properties of the KdV equation can be easily derived from its bi-Hamiltonian
features. To pass from the continuous setting to the discrete one it is quite natural to
replace the circles® with the cyclic groupZ,. Moreover, it is convenient to replace

* Corresponding author.

0393-0440/00/$ — see front matter © 2000 Published by Elsevier Science B.V.
PIl: S0393-0440(99)00070-4



274 A. Meucci/ Journal of Geometry and Physics 35 (2000) 273-287

the Lie algebragl(2, R) with its Lie groupGL(2, R). This way we are led to consider
the finite-dimensional phase space Ni&p, GL(2, R)). Unfortunately, there is no way

to endow this space with a bi-Hamiltonian structure. Therefore in Section 2 we define
on MapZ4, GL(2, R)) a new geometrical structure such that, under some assumptions,
a suitable reduction process yields again a bi-Hamiltonian manifold. We call this new
kind of manifold aPoisson bi-anchored manifald is a Poisson manifold equipped with

a generalized “Dirac structure” [4] that defines a useful relation on one-forms. More
technically, this relation is written in terms of a pair of compatible Lie algebroids
[10].

In Section 3 we present the reduction of the specific Poisson bi-anchored manifold
Map(Z4, GL(2, R)), which is an adaptation of the Marsden—Ratiu reduction scheme for
Poisson manifolds [14]. As we said, the reduced manifold is bi-Hamiltonian and we can
apply the theory of Gelfand and Zakharevich [7] to study the integrability properties of
the corresponding bi-Hamiltonian flows, as we do in Section 4. These are the flows of
the periodic Toda lattice, which appears once more as the discrete counterpart of the KdV
equation.

I wish to thank Marco Pedroni for many enlightening discussions and Franco Magri for
proposing the problem and introducing me to dynamical systems.

2. Poisson bi-anchored manifolds

In this section we introduce the geometric objects we need for our approach to the Toda
lattice. We will endow the manifoldM of the maps from the cyclic group, to GL(2, R)
with several structures, namely a Poisson tensor and two compatible Lie algebroids suitably
soldered together.

A point g of M is simply ad-tuple of invertible 2x 2 matrices

q=1("....qY. 1)
where
k k
91 4
¢* =( . j>. )
43 4y

We will always be dealing withi-tuples of matrices and the following condition is
supposed to hold throughout the discussion:

(_)k+d — ()k (3)

For convenience, we will say that a matrix as in (2) represedttuple as in (1). Vector
fields onM will be represented by-tuples of 2x 2 matrices;* whose entries are functions
of the pointg € M. The same way, one-forms oW are represented astuples of 2x 2
matricesu® where each entry is a function of the point. The value of the one-foom the
vector fieldg is given by the scalar function
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d
. k -k k -k k -k k -k k -k
(o, ) = Y Tr(a*q") = 044t + a5d5 + a5ds + hdy. 4)
k=1

Next, we endowM with a Poisson manifold structure, which is inherited from the natural
immersion ofGL(2, R) in the space of Z 2 matrices Maf2, R) as an open, dense subset.
Indeed we can provide M@, R) with the structure ofwisted Lie algebraf we define the
commutator of two matriceg, andg;, in Mat(2, R) as

[9a> a] = 94D — gpbay, )

whereb is any fixed matrix (see, e.g., [16]). Since N®&tR) can be identified with its dual
space through the trace form (4), it inherits the canonical (with respect to the commutator
(5)) Lie—Poisson bracket on the dual of a Lie algebra defined by Kirillov (see, e.g., [9]).
A quick computation shows that the corresponding Poisson tef'so* M — T M is
assigned by the formula

i* = P'(0)* = ¢*o*b — ba*g~. (6)

In order to recover the Toda lattice we choose

b—lo 7
(4 o) ™

Then, the Poisson tensor explicitly reads

-k k k k k -k k k k k
q1 = 4203 — 43¢y, qy = —%1qy — X34y,
g5 =qhat +qkak, ¢k =0 (8)

To obtain the Hamiltonian vector field ; associated with a (Hamiltonian) functidi :
M — R we simply have to plug its differential = dH into Eq. (6).

At this point we go back to the general theory. We define on a Poisson manitcéah
additional structure that represents a generalization of the action of a Lie algehtfzaod
was first studied by Mackenzie [10].

Definition 1. Let M be a manifold. TheiiM, &, A, {-, -}) is said to be a Lie algebroid if
(a) € is a vector bundle oM.
(b) {-, -} is a bi-linear composition law of (£), the space of sections éf that makes
(&), {-, -}) into a Lie algebra

{s, 1} +{r,s} =0, {r.sh oy +{{s, e}, i+ {{r. 1} s} = 0. ©)
(c) The mapA : € — T M, called anchor, is a Lie algebra morphism

A({s, 1}) =[A(s), A@®)], s,t €T (&), (10)

where [, -] is the usual commutator of vector fields.



276 A. Meucci/ Journal of Geometry and Physics 35 (2000) 273-287

If on the same manifold1 and vector bundI€ live two different Lie algebroid structures
M, E, A, {-,-)and(M, &, A’, {-, -}) we can consider the pencil of composition laws on
sections

{s, 1} = (s, 1} + Afs, 1), (11)
and the pencil of maps
A (s) = A(s) + 1A' (s), (12)

wherea is a complex parameter.

Definition 2. We say that the above Lie algebroids are compatibiaAff &£, A;, {-, -}») is
a Lie algebroid for every value of. We call(M, &, A, {-, -}») a pencil of Lie algebroids
andA, a pencil of anchors.

It is easy to check that the compatibility condition amounts to
[AGs), A'(D] + [A'(5), AD] = Als, 1)) + A'({s, 1}). (13)

In our approach the two compatible Lie algebroids are important because they allow us to
define a useful relation among one-forms.

Definition 3. Let A*, A™* : T*M — £* be the dual anchors aof andA’, respectively. We
define a one-fornx to be related with a one-forgh (and we denote this by ~ g) if

A*a = A*B.

In the example we are considering here, whete= Map(Z;, GL(2, R)), we can define
two compatible Lie algebroids ai as follows. First, we consider the trivial vector bundle
& = M x [Mat(2, R)]¢, where(-)¢ denotes the-times Cartesian product) x - - - x (-).
The sections of this bundle are representedyples of 2x 2 matricess* whose entries
are functions of the point € M. Then we define the pencil of anchotg : £ — T M as

¢* = Ax()F = S g" + ab) — (" + ab)s", (14)

whereb is the constant matrix defined in (7). In components the pencil of anchors reads

k+1

i1 =y 57148 — aps) + Ay =S,

q1 1= 5Dt + 55

-k KLk k4Ll ok kok Kok k
s = (s777q5 + 55 g — 5591 — q554) — A(s3),

g5 = (s570qF + 55 hq — gbst — qish) + a5,

. k+1 k+1

q3 = (53" a3 + 557 — abs3 — agsy). (15)
Let us construct a composition lgw -}, onT'(€) in such a way thatM, &, A;, {-, -},) be
a pencil of Lie algebroids. Formula (13) and a simple calculation suggest that

{5, 135 = 9a()t* — daqys® + [15, 551 + 2(0ar) " — dar)s5), (16)
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where byd;r we mean the derivative of the sectioralong the vector field. It can be
checked thaf-, -}, is a Lie bracket o' (£) for all A. Thus, the manifold\M is a pencil

of Lie algebroids. To obtain explicitly the relation on the one-forms we need to derive the
expression of the dual pencil of anchars = A* 4+ AA™. An element of the dual vector
bundle£* can be naturally identified with a point 6fby means of the pairing

ZTr(gksk)—glsl E5sK + £Xsh + £Xsh.

k=1

Therefore the dual pencit} : T* M — £* can be viewed as a map that with a one-form
« associates d-tuple £¥ of matrices whose entries are functions of the pgirt M. A
quick calculation shows that} reads

£ = A5 = (¢ T+ ab) T — oM g" ). (17)

With this formula and Definition 3 it is easy to check that- 8 if and only if

ol el ol ok =
‘1/1< 10‘15 l"“l]z{ 10‘5 1_0‘1612_0‘2‘14—/3 ,

5 eyt + gy tas T — gt — ahal = 4,
I S SN

Now we return to the general theory to introduce the final character. We recall that so far
M is a Poisson manifold endowed with a pencil of Lie algebroids. We want to solder these
structures by means of two mapsJ’ : T* M — £ that satisfy the following intertwining
conditions: ifa ~ B then

Pa)=AJa+ 1B, (18)
P'(B) =A(Ja + J'B). (19)

In this case we will say that is a Poisson bi-anchored manifold. We resume the whole
situation in the following picture:

o /

J(e)+J' (8

JZARN

A class of Poisson bi-anchored manifolds are for example the Poisson—Nijenhuis (PN)
manifolds (see [13]). These are manifoldd endowed with a zero-torsion tensar :
TM — TM and a Poisson structui, together with suitable compatibility conditions.
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In that case the vector bundfeon which the anchors are defined is the tangent bundle,

T M; the two anchors are the Nijenhuis tengérand the identity map respectively; the
composition laws on the vector fields are easily obtained in terms of the Nijenhuis tensor; the
intertwining conditions are also satisfied, as a consequence of the compatibility conditions
between the Nijenhuis and the Poisson structure of a PN-manifold.

In the case of PN-manifolds the relation (3) among two one-forms is summarized by the
dual tensoiN* : o« ~ B if 8 = N*«. This relation displays a very nice property: if the
image throughv* of an exact one-form fl € X*(M) is exact, i.e., there exists a function
f1 such that

N*df =dfi, (20)

then the recursive application of the operatdrto d f generates a bi-Hamiltonian hierarchy.
This is why the PN-manifolds represent a natural setting to study integrable Hamiltonian
systems.

Going back to our example, if we define the mapd’ : « — s by

J o s* = akgk, J sk = —okb,

it is easy to see that they verify the intertwining conditions (18) and (19). In components
the maps read

ot = + ol k=t
L Smddrad g0

S-abdrdet, | S=s

sk = akgh + akql, ssk = 0.

This ends the definition of the geometrical structures of the manifdld= Map(Z,, GL
(2, R)): itis a Poisson manifold endowed with two compatible Lie algebroid structures that
define a relation on one-forms and two intertwining maps that solder everything.

3. The reduction

In this section we will leave the general theory. We will operate a reduction of the
manifold M = Map(Z,, GL(2, R)) studied in the previous section. With a combination of
a restriction and a projection we will obtain a new maniféldof lower dimension with
the same geometrical structure as the original manifdldThe interesting point is that on
N the Poisson tensor combines with the relation on one-forms in such a way to define a
second Poisson tensor. A check of the compatibility between the two Poisson tensors will
make N into a bi-Hamiltonian manifold, which is the object of interest in our approach
(see, e.g., [11]). The reduction process we present here follows the reduction scheme (for
Poisson manifolds) of Marsden and Ratiu [14].
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As a first step, we consider the distribution®iImA’. It is easy to verify by formulas
(6) and (14) that this distribution is integrable and therefore it foliates(MapGL(2, R))
in maximal integral leaves, which are thé-8imensional hyperplanes of the form

k k
91 43
q" = ( k) : 1)

g5 v

wherev is a constant. The restriction process we mentioned above consists in selecting
one of these leaves. To obtain the Toda lattice, we pick thedesfined byv* = 0 for all
k.

The pencil of anchors allows us to define another distribution, naiely A (kerA’),
which is integrablet We are interested only in the restriction of this distribution to the leaf
L, which we denote by)|,. The distributionE = D|, N T L of £ is also integrable and
an explicit computation shows thatis spanned by the vector fields of the form

¢ =0 gh=-ukgh,  4h =g, (22)

for arbitrary.*. From this expression we see that along the vector fieldsthre following
equations are satisfied:

qll‘ =0, (q12‘+1q§)‘ =0. (23)

This means that the distributidfi admits the two invariants

af =qi. af =43 g5, (24)

At this point we can operate the projection we mentioned above: we define the reduced
manifold A/ to be the quotient of the leat with respect to the foliation induced by the
distribution £. By (23) and (24) we see thaf is a 2/-dimensional manifold that can be
regarded a?, endowed with the set of coordinated, a4)=1,... 4. The above formulas

also yield the expression of the canonical projection — N.

After obtaining the reduced manifold” we endow it with a Poisson structure. This can
be done observing thatM, P’, D, L) is Poisson reducible, in the terminology of [14]. To
find the expression of the reduction Bf we have to extend a generic one-fognon A/ to
a one-formx on M (possibly defined only at the points of the legfwhich annihilates the
distribution D. This means

(a, D) =0, (o, q) = (@, m:q).
Let us denote by = ext(p) any such extension. Then the expression
p'(p) = 7. o P'(eXt(p)) (25)

does not depend on the choice of @tand determines a Poisson structure/dnif we
denote by = Y°{_;¢¥da’ +kdak the generic one-form o, an easy calculation shows

L This is true in general, provided that for any two sectinsin I'(£) such thatd’(s) = 0 andA’(r) = 0 we
have{s, r} = 0. It is evident from (16) that this condition holds in our case.
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that an extension = ext(p) has the form
k k+1
Z ‘Pz
of = k=1 k-1 ' (26)

43 ¥2 oy
As we said, this matrix is not completely determined: the componeﬁmwe free, since
the extension gives an equivalence class of one-forms. Now we can apply formula (25) to
obtain the expression of the reduced Poisson tegisor

ko k=1 k-1 k Kk ko ok k+1
ay =a; "¢y T —aze;, a5 = as (e} — i ™).

This is the well-known first Poisson structure of the periodic Toda lattice [1].

To find another Poisson structure we have to determine the reduced relation on the
one-forms of\/. Therefore we need the expression of the reduced dual pencil of anchors
aj. To have this, in turn, we have to define a proper reduced vector burssed onV on
which the reduced anchors agt:: &/ — TN. Itis convenient to define first the dual vector
bundlel/* and the dual pencit;. The definition of the vector bundl¢ and the penci,
will then follow by duality.

Let us evaluate the original dual pencil of anchdrson the general extensian of
the one formp € X*(N\V). An explicit calculation shows thdt = A} (ext(p)) is given in
components by

k k—1, k-1 k—2 k—1 k-2 k+1
§1 =91 (g " +1)~— 901(‘11 +X)+o;, gy g3 ‘PZQZ+ ‘13,
1 k—1 k-1

& = —oias + o5 tah@y ) oy g

gh = b gkt k1 gk ) —dhel, gl =0 (27)

We notice that the following combinations:

k—1, k-1 k2klk2 k+1
Sf = ¢ (ql +A) — (Pl(‘ll +)L)+§0 4> 43 _902512Jr 513,

k 1 k k—1 k+1 k+1 k k+1 k. k
ESTlgk 1 gbah = i bkt — i g T g + b gk ek gk + )
k— 1 k 1
CI2‘13 (6]1"‘)»)

do notdepend on the choice of the extension, i.e., they do not depeaﬁdamj are invariant
along the fibers of the projection, i.e., they depend on the coordinatésoafy via the
combmatlonSq1 = al and qk+1q§ = a . Therefore we define the reduced dual vector
bundle ag(* = N x R, with coordlnates{a’l‘, ak, nk, n8), and we assign the projection
T : E*p — U* as follows: on the basis it is the canonical projection £ — N defined

by (23) and (24); on the fibers it reads

ny = &1, (28)
LGk | gkgk (29)
Hence the reduced dual pencil of anchors, which is defined in analogy with (25) as

n=aj(p) = (t o A})(ext(p)), (30)

7]2—5
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reads explicitly
n'{ = ¢y Nay Tt 1) — i (af + 1) + 0b%a5 % — phal,
s = ot ray Tt — ot ak + abehaf +0) - alz‘ Yos~af + ). (31)

Expression (31) also yields the relation on the one-form&/oBy Definition 3 we have
that two one-forms, v on V" are related if

afo =ad*vy, (32)

which in components reads

k EHL L | Gkolghel bt ke k+1
pya; — ¢} + b tas - pb et = i — it

k k- 1 i1 k=1 k-1 _ ket

ay (a5¢s — aj )+ oy eyt — ¢ hay = asys — a5 tysT

To complete the Poisson bi-anchored structure of the reduced manifale have to
calculate the reduced pencil of anchaess: &4 — TN, which is readily obtained by
duality, and the reduced intertwining map§g. This computation is a bit more complicated
and can be found in [15]. If we choose the set of coordinatbsas, u%, u%) for the vector
bundlel/, then the intertwining maps turn out to be

— k1 k1 k
=9 ay -, N R
) - !

2

07
0.

Now we focus on the special feature of teelucedPoisson bi-anchored manifold. By
Eq. (32), for a fixed one-form there is a whole class of one-formg][=  + kera’* that
is related with it. In the reduced structure, thoughgkerc kerp’. Therefore the following
tensor

p() :=p'(¥) (33)

is well defined. A lengthy calculation shows that the bracket induced by this tensor verifies
the Jacobi identity. Furthermongjs compatible withy’, i.e., the pencip,, = p + Ap’isa
Poisson tensdr for all values of the complex parameterExplicitly ¢ = p, (¢) reads

= (o5 Tak 7t — phab)(ak + ) + o lal — ok tak,
ih = abtohad 1) AN 4 ) + g ek bt (34)

Hence we recovered the bi-Hamiltonian structure of the periodic Toda lattice (see [17] and
references therein). Our goal has been achieved: we arrived at a bi-Hamiltonian manifold by
means of a systematic procedure of reduction of the original Poisson bi-anchored manifold.
Now we have to investigate the information provided by the bi-Hamiltonian structure.

2We recall that a manifold endowed with two compatible Poisson tensors is said to be bi-Hamiltonian.
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4. The periodic Toda lattice

In this section we show how the bi-Hamiltonian structure obtained in the previous section
accounts for the integrability of the periodic Toda system. In general, to obtain an integrable
system from a bi-Hamiltonian manifolgM, P, P’) itis convenient to focus on the Casimirs

of the Poisson pencil, i.e., the functio@ssuch that their differentials are in the kernel of
P,.. Indeed, if we expand a Casimir in powersxof

C=Y H, (35)

it is immediate to check that the coefficierts satisfy the Lenard relations
P'(dH;) = —P(dH;1). (36)

Itis easily shown (see, e.g., [11]) that this in turn implies thatflis are in involution with

respect to either Poisson bracket. If these coefficients are enough, the system is integrable
in the classical sense of Arnold [2]. Nevertheless, finding the Casimirs of a Poisson pencil
is not easy in general. In the present case we can make use of the following proposition

Proposition 4. If i solves

hihirr = @ 4+ Wy + db, (37)
then

C(A)=hy-hg

is a Casimir of the Poisson pen¢B4). The solutions:; and thus the Casimirs C can be
calculated explicitly as Laurent series in the parameter

Proof. We divide the proof in three parts.
1. By (34) a one-forny in the kernel ofy;, must satisfy
X (@k + 1) — QST ) + o Tak T — gk tlak = (38)

((plz‘ 1a12‘ 1 gpzaz)(al + 1)+ tpkH X (pll‘ lalz‘ l-o. (39)

Eq. (38) implies
ok@k + )+ btk 1 phal = L, (40)

whereL is an arbitrary function that does not depend on thessiten the other hand,
Eq. (39) implies

1 1 k l k—1 k-1
0= (‘Pk 61]2C - (Pzaz)@l(al +24)+ §01<P + ‘/71901 a;
k—1 k-1 k—1 k-1 k+1 k—1 k-1
((0 ar, — — (/)zalzc)(L ¢, a4y T — (/)zaz) + ¢]{¢1+ 5 (PJ_‘Pl as

=L(pstab T —phab)— (o5 asTH2 + (phab)? — hpl™ lalz‘ Lt pfeital,
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and thusiitis equivalent to
k+1 k _k
(‘/’2“2) + ‘Plf/’ — Lgya; = G, (41)

whereG is another arbitrary function that does not depend on thé siteorder to select
only exactone-forms we seL to be a constant and = 0. Under these assumptions,
the system (38) and (39) is equivalent to

or(ai +2) + 5 tay P+ gpas =L, (42)
as(@3)® + 191 — Los = 0. (43)
If we set

k+1
he= (44)

‘/’2

we can rewrite the system (38) and (39) as
L — gkak L — akek
hi—a(as +2) +ay b= —"22, hihg1 = — 52
2 ¥

Thus if by solves (37) then the one-form= " (pldal + <p2da2 defined by
L—aseh =i, @it = ghin, (45)

whereL is a constant, is in the kernel of the Poisson pencil.
. The above one-forma is exact and its primitive i& In(h1 - - - hy). Indeed, by (37) and
(45) we can write
L
= @4 + (hip1 — (ay ™ + 1)gh.
Using this expression, we obtain, for any cume) in A,
d

(p,a) = Y (@Y hay™ + ghas) = Z(wzhkak+l+<p§a§)
k=1

[
M .

o8 (hichi1 + hihger — (@5 4 ) hy)

k=1

d d d
; ; L .
= ) _¢2hih Shihirt — ko gy )
Z ke+1 + Zr)z i+l Z (tpl e + ¢ k+1> k
k=1 k=1 k=1
d d d d I
- Z 2hichi+1 — Zﬁﬁlﬁhkhk+1 + Z(ﬂéhkhkﬂ - Z (90'{ — h—) i
k=1 k=1 k=1 k=1 k
d d
=) 0 =) (‘pl - —) Z i = t(L IN(hy-- - ha).
k=1 k=1

ThereforeL In(hy - - - hy) is a Casimir and so is the produ€t= hj - - - hy.
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3. To express the solutiolhg of the characteristic equation as Laurent series, it suffices to
write hy in either of the following forms:

+mhk. +ml%.

_ JJ _ J

hk_)h—i_él_)\f’ hk—é 1—”,
J= J==

and substitute in (37). The coefficierttg ; are then determined algebraically.
O

We call (37) thecharacteristic equationlt is the counterpart of the well-known Riccati
equationh? + h, = u + A that appears in the study of the KdV equation (see, e.g., [5]).
Proposition 4 allows us in principle to calculate the Casimirs of the Poisson penbilit
the computation is lengthy. Fortunately there is a shortcut: if in (37) we set

Vik+1
h = N 46
k ) 2 ( )

the characteristic equation becomes the linear system
1 Yir2 — (@ + My — aby = 0. (47)

We can express (47) in matrix form as

Ly =0, (48)
whereL is the Lax matrix
/L(ai +A) —u? 0 ag
a3 @ +r —p?
L = 0 a% . . 0 s
p@it+xn  —p
—uz 0 ag_l M(af + A)

andy is the vector of the “homogeneous coordinates”
V1
v=1:
Va
For (47) to admit non trivial solutions we must have et 0. It can be proved that the

cyclicity of the matrixZ implies that its determinant is a polynomial of degree Zih
Therefore we must have

0=detl = —u® + C1u? + Co, (49)
whereC1 is a monic polynomial of degregin A

C1(A\) = Hi+ AHa+ -+ A92Hy_1 + 297 K1 + 29, (50)
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for proper coefficientds;, K;. The functionC instead does not depend an
Cr=Koy= (—1)d+la%a§ .- -a‘zi. (51)

By Proposition 4 and Eq. (46), for all that satisfy (49) we have that? = h1---hy

is a Casimir, thus”1 andC, are Casimirs as well. Thei@ + 1) coefficients provide all
information about the geometry of the system at hand. Indeed, KinaedK » are Casimirs
of the Poisson tensgf, the 2d — 1)-dimensional manifold described by the equations

K1 = constant K> = constant

is a symplectic leaf of’. 2 Furthermore, due to the Lenard relations, (he- 1) coefficients

H; are a set of functions in involution with respect to the Poisson bracket inducgd by
Since these functions are independent, the symplectic leaf admits a complete set of functions
in involution and thus the vector fields

X; =p'dH;

describe an integrable system. This is dhparticle periodic Toda hierarchy.
4.1. An example: tha-particle Toda lattice

To illustrate how the scheme described above works and how the Toda lattice arises we
consider here the specific case where= 3. This example is easy to handle, but at the
same time it displays all the features of the general case. In order to make the equations
easier to read we will change notation: we@pt= by, as = ax, 5 = B, ¢5 = ax. Thus
our bi-Hamiltonian manifoldV' become&® with coordinatesas, as, as, b1, b2, b3). The
Poisson pencip, associates with a one-forﬁ,le(akdak + Brdby) the vector field

ax = ag(—ogp1ak1 + ax—1ak—1 — Brr1(brs1 + A) + Bi(br + 1)),

b = (bx + M (—akar + ox—1ax-1) + akfi+1 — d—1Pe—1. (52)
wherek = 1, 2, 3. Eqgs. (50) and (51) provide the Casimirs of the Poisson pencil (52)

Ci1() = Hi+ 1Hz +22K1+2%, Ca(h) = Ko, (53)
where

Hi = b1bobz + axb1 + a1bz + azbo, Hz = biby + b1bs + bobz + az + a1 + as,
K1 = b1 + by + bs, K7 = ayazas. (54)

Therefore the two vector field$, = p’dH; and X2 = p’dH> read

X1 ax = ap(bpgabrk—1 — b—1by + apy1 — ak—1),
bi = bxy1ax—1 — bx—1ax, (55)

X2 ar = ax(brr1 — by), by = ax—1 — ax. (56)

3 One can show (see [18]) that such a symplectic leaf can be endowed with a bi-Hamiltonian structure, obtained
by a Marsden—Ratiu reduction from the one/gn
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They define an integrable system on the symplectic leaugswhich are four-dimensional
phase spaces. Expressions (55) and (56) are the equations of the 3-particle periodic Toda
system.

5. Conclusions

In this paper we defined a new type of manifolds, which we called the bi-anchored Poisson
manifold. We showed that a suitable reduction of a specific instance of these manifolds,
namely the set of maps frofy, to GL(2, R), gives rise to the phase space of éhparticle
periodic Toda lattice. This way we saw from a new point of view how the periodic Toda
lattice can be considered the discrete counterpart of the KdV hierarchy.

There are several further developments of this approach. First of all, it is easy to endow
the set of maps frori,; to GL(n, R) for a generia: € N with the structure of “bi-anchored
Poisson manifold”. Itis possible to show that the reduction of these manifolds gives rise to the
other periodic Toda systems, which are the discrete analog of Gelfand—Dickey hierarchies
[6]. This has been verified for the case= 3 in [15].

Secondly (see [12,15]) the study of the conservation laws of the periodic Toda lattice al-
lows to define the discrete analog [8] of the KP equations on Sato Grassmannian [19]. These
represent flows on an infinite-dimensional phase space that admit invariant submanifolds.
These submanifolds are the different phase spaces of the full periodic Toda lattice, and the
restriction of the KP equation to these phase spaces are the Toda equations. This way it is
possible to extend to the discrete case the description given for the continuous case in [5],
where the KdV hierarchy and the (usual) KP equations are considered.
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